
Chapter 3 Additional Questions

21. i) Let u and v be inverse arithmetic functions, so u ∗ v = δ. Let F and
G be functions F,G : R→ C. Prove, using Möbius Inversion, that

G(x) =
∑

m≤x

u (m)F
( x

m

)

(20)

if, and only if,
∑

n≤x

v (n)G
(x

n

)

= F (x) . (21)

Hint: Assume (21) and insert this expression for G into the sum in
(22), and vice verse.

22. i) Prove that for von Mangoldt’s function Λ we have

Λ(n) = −
∑

d|n

µ(d) log d, (22)

for n ≥ 2. This can be written as Λ = −1 ∗ µℓ, where µℓ (n) =
µ(n) log n.

ii) Deduce that if gcd (m,n) = 1 then

Λ(mn) = δ(n) Λ(m) + δ(m) Λ(n) ,

where δ(n) = 1 if n = 1, 0 otherwise.

Hint for ii. Recall that if gcd (m,n) = 1 then the divisors d of mn
are in one-to-one relation with pairs of divisors d1|m and d2|n. Further
we also have gcd (d1, d2) = 1 in which case µ(d1d2) = µ(d1)µ(d2) . Use
this recollection in the convolution Λ = µ ∗ ℓ evaluated at mn.

23. Assume F is an arithmetic function and G(n) =
∑

d|n F (d) , in which

case F (n) =
∑

d|n µ (d)G(n/d) by Möbius Inversion.

i) Prove that

∑

m|n

µ(m) log
( n

m

)

G
( n

m

)

= F (n) log n+
∑

d|n

Λ(d)F
(n

d

)

.
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Hint start with log (n/m) = log n− logm and use Question 22.

ii) Generalise Λ = µ ∗ ℓ by defining Λk = µ ∗ ℓk for all k ≥ 0. Prove
that

Λk+1 = Λkℓ+ Λ ∗ Λk, (23)

i.e.
Λk+1(n) = Λk(n) log n+ Λ ∗ Λk(n)

for all n ≥ 1.

The reason for this question is that one can show that Λk is non-zero

only on integers with at most k distinct prime divisors, i.e. ω (n) ≤
k. Thus using Λk it may be possible to prove results concerning such

integers.

24. A special case of Question 21 with u = 1 and v = µ, states that if F is
a function on [1,∞) and G(x) =

∑

n≤x F (x/n), then

F (x) =
∑

n≤x

µ (n)G
(x

n

)

. (24)

Prove the Tatuzawa-Iseki Identity

∑

m≤x

µ (m) log
( x

m

)

G
( x

m

)

= F (x) log x+
∑

n≤x

Λ(n)F
(x

n

)

.

This identity is seen in some elementary proofs of the Prime Number
Theorem (i.e. proofs that do not use complex analysis).

Hint On the left hand side write log (x/m) = log x− logm. On one of
the terms use (25), on the other substitute in for G (x/m) and rearrange
the sums.

25. The function Q2 (n) could be written as |µ| (n) defined as |µ(n)|. Thus
we could look at the general |µk| for k ≥ 1. Here |µk| is multiplicative
and satisfies

|µk| (p
a) =

{

1 if a = 0 or k

0 otherwise.

i) Prove that

D|µk|(s) =
ζ(ks)

ζ(2ks)
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for Re s > 1/k.

ii) Why does this suggest µk ∗ |µk| = µ2k?

Prove this by showing equality on prime powers

iii) Deduce that Qk ∗ |µk| = Q2k.

iv) What result from the problems for chapter 4 suggests q2 = sq∗|µ3|?

Prove this by showing equality on prime powers.

26. i) Prove that for any two arithmetic functions f and g we have

λ (f ∗ g) = (λf) ∗ (λg)

where λ is Liouville’s function and

2Ω (f ∗ g) =
(

2Ωf
)

∗
(

2Ωg
)

.

Here we are looking at products of functions as well as convolutions.

ii) Deduce that

λd = λ ∗ λ and λd2 = λ ∗ λ ∗ λ ∗ µ,

and thus

Dλd(s) =

(

ζ(2s)

ζ(s)

)2

and Dλd2(s) =
ζ3(2s)

ζ4(s)

for Re s > 1.

27. From Question 5

ζ(s)
∞
∑

n=1

λ(n)

ns
= ζ(2s) .

From Question 9

∞
∑

n=1

2ω(n)

ns

∞
∑

n=1

λ(n) 2ω(n)

ns
= 1.

From Question 11

∞
∑

n=1

d(n2)

ns

∞
∑

n=1

λ(n) d(n2)

ns
= ζ(2s) .
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From Question 13

∞
∑

n=1

d2(n)

ns

∞
∑

n=1

λ(n) d2(n)

ns
= ζ2(2s) .

These results suggest 1 ∗ λ = sq (seen already in Question 7iii) along
with

i) 2ω ∗ λ2ω = δ, hence λ2ω is the inverse of 2ω,

ii) g ∗ λg = sq where g (n) = d (n2),

iii) d2 ∗ λd2 = sq ∗ sq.

Prove Part i by checking equality on prime powers.

Deduce ii and iii using known results on convolutions of functions.

28. Questions 5, 9, 13 and 15 all started by taking a multiplicative arith-
metic function, forming its Dirichlet series and then factorising the
associated Euler product into products and quotients of the Riemann
zeta function.

An alternative method is to start with the product and quotient of
Riemann zeta functions, and multiply out all their Euler products to
find one Euler Product of the form

∏

p

(

1 +
c1
ps

+
c2
p2s

+
c3
p3s

+ ...+
cr
prs

+ ...

)

.

Here the numbers ci will not depend on p. If we multiply this out we get
a Dirichlet Series Df (s) and the associated function is multiplicative
and given by

f(n) =
∏

pa||n

ca.

Do this in the following cases, multiply out the Euler products for the
Riemann zeta functions and find the associated arithmetic function.

i)
ζ(3s)

ζ(s)
, ii)

ζ(2s)

ζ(3s)
, iii)

ζ3(s)

ζ(3s)
.
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29. The result Qk = 1 ∗ µk of Example 3.31 could be compared with an
earlier result, Question 10, 2ω = d ∗ µ2. This suggests looking at d ∗ µk

for k ≥ 2.

Describe the function d ∗ µk.

Hint Because this is a multiplicative function it suffices to describe the
value of this function on prime powers.

A sort of truncated divisor function.

30. Define φν = µ ∗ jν for ν ∈ C. Show that

φν(n) = nν
∏

p|n

(

1−
1

pν

)

.

31. We have seen in Question 16 that, because σ = 1 ∗ j, then

∞
∑

n=1

σ(n)

ns
= ζ(s) ζ(s−1)

for Re s > 1. Give an alternative proof by looking at the Euler Product
of the left hand side.

Hint Write
∞
∑

n=1

σ(n)

ns
=

∏

p

(

∞
∑

a=0

σ(pa)

pas

)

,

and

σ(pa) =
a

∑

m=0

pm.

The problem then becomes one of interchanging summations.

32. In Question 29 we have seen a sort of truncated divisor function given,
on prime powers as

fk(p
a) =

{

a+ 1 if a ≤ k − 1,

k if a ≥ k,

and defined to be multiplicative on all integers.
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By looking at its Euler Product, write

∞
∑

n=1

fk(n)

ns

in terms of the Riemann zeta function.

This is Question 16 in reverse, there you started with the expression in
terms of the Riemann zeta function and found the function fk.

Hint When you write this as a Euler Product and write y = 1/ps you
will need to sum a series of the form

S = 1 + 2y + 3y2 + 4y3 + ....+ kyk−1 + kyk + kyk+1 + · · ·

Consider S − yS.

33. Results from this question are used in an Addition Question on the next

Problem Sheet.

i) Prove, by looking at the Euler Product of the Dirichlet Series, that

∞
∑

n=1

Q2(n)

φ(n)ns

converges for Re s > 0.

ii) Show that
∞
∑

n=1

Q2(n)

φ(n)n
=

ζ(2) ζ(3)

ζ(6)
.

(The constant is approximately 1.943596436... .)
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